# Potential host compounds: 1,1'-bis(diarylhydroxymethyl)ferrocenes 

Fumio Toda, ${ }^{*, a}$ H uiyou Liu, ${ }^{\text {a }}$ Ikuko M iyahara ${ }^{\text {b }}$ and Ken H irotsu ${ }^{*, b}$<br>a D epartment of Applied Chemistry, Faculty of Engineering, E hime U niversity, M atsuyama, E hime 790, J apan<br>${ }^{\text {b }}$ D epartment of C hemistry, Faculty of Science, 0 saka C ity U niversity, Sumiyoshi-ku 0 saka 558, J apan


#### Abstract

1,1'-B is(hydroxydiphenylmethyl)- 9a, rac-1,1'-bis(1-hydroxy-1-phenylethyl)- 9b, rac-1,1'-bis(o-chloro-phenylphenylhydroxymethyl)-9c and rac-1,1'-bis(hydroxy-1-naphthylphenylmethyl)-ferrocene 9d were prepared as host compounds. X-R ay crystal structures of $1: 1$ inclusion complexes of 9 a with MeOH and of 9 b with dimethylformamide, and 9 c itself were analysed.


It has been postulated that organic molecules with a rigid structure and possessing a diarylhydroxymethyl group will act as host compounds to include various guests. ${ }^{1}$ Such alcoholic host compounds aggregate to some degree through the formation of a hydrogen bond network because of their sterically crowded hydroxy groups. Some host compounds bearing the diarylhydroxymethyl group such as $\mathbf{1 a},{ }^{2} \mathbf{1 b}^{\mathbf{2}}$ and $\mathbf{1 c}{ }^{\mathbf{3}}$ have been found


1 a: $n=2$ b: $n=1$ c: $n=0$



4

to work as good host compounds. Similarly $\mathbf{2}$ and $\mathbf{3}$ have been designed as good hosts. ${ }^{4}$ Chiral host compounds, 4, 5a and derivatives $\mathbf{5 b}$ and $\mathbf{5 c}$ have been used as hosts in enantiomer resolution and enantioselective reactions of guests. ${ }^{5}$ By using the triple bond as a rigid skeleton together with the diarylhydroxymethyl group, the interesting sexipedal host, $6 a^{6}$ and its chiral derivative, $\mathbf{6} \mathbf{b}^{\mathbf{7}}$ have been prepared and their high inclusion tendencies studied.

We now have designed a new host compound which contains ferrocene as the rigid skeleton and the diarylhydroxymethyl group. We expected that the ferrocene host would show high inclusion ability for various guests since the host molecule can rotate freely around the bond binding the two cyclopentadiene rings to optimise hydrogen bonding between host and guest.

1,1-Bis(hydroxydiphenylmethyl)ferrocene 9a was prepared as red prisms by a Grignard reaction of PhMgBr with $1,1^{\prime}$ dibenzoylferrocene 8 a (prepared by a benzoylation of ferrocene 7) (Scheme 1). By a similar G rignard reaction with PhM gBr ,

rac-1,1'-bis(1-hydroxy-1-phenylethyl)- 9b, rac-1,1'-bis(ortho-chlorophenylphenylhydroxymethyl)- 9c and rac-1,1'-bis-(hydroxy-1-naphthylphenylmethyl)-ferrocene 9 d were prepared from 1,1'-diacetyl-8b, 1, 1'-di(ortho-chlorobenzoyl)- 8c and 1, 1'-di(1-naphthoyl)-ferrocene 8d, respectively. In all cases, only rac-derivatives and no meso-isomers were produced. In the Grignard reaction, a kinetic mechanism to produce rac-isomer selectively is invoked, such as formation of an intramolecularly Mg -bridged intermediate between the two $\mathrm{C}=0$ groups, $\mathrm{C}=0 \cdots \mathrm{MgBr}{ }^{+} \cdots \mathrm{O}=\mathrm{C}$. PhMgBr reagents then attack the $\mathrm{C}=0$ groups from the direction which produces the rac-product only. The rac-structure of 9 b - $\mathbf{c}$ was elucidated by X -ray analysis.
Inclusion tendencies of the hosts $9 \mathrm{a}-\mathbf{d}$ were tested for several typical guest compounds and are summarized in Table 1. A lthough 9a and 9 d showed relatively high inclusion ability, 9 b and 9c showed poor inclusion ability (Table 1). In general, the inclusion ability of rac-host is lower than that of optically active host. Thus, $\mathbf{9 b}$ and $\mathbf{9 c}$ should be poor hosts, although rac-9d showed quite high inclusion ability. In order to clarify the reason for this, X -ray crystal structures of the $1: 1 \mathrm{MeOH}$ complex of 9a, 1:1 DM F (dimethylformamide) complex of 9 b and the host $9 \mathbf{c}$ itself were studied.
The molecular structure of the $1: 1$ complex of 9 a and MeOH is shown in Fig. 1. The host, 9a has a non-

Table 1 H ost-guest ratio ${ }^{\mathbf{a}}(\mathrm{H}: \mathrm{G}$ ) and melting point of inclusion complexes of ferrocene hosts $9 \mathbf{a}$ - $\mathbf{d}$ with typical guest compounds

|  | H ost |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9a |  | 9 b |  |  | 9c |  |  | 9d |  |
|  | H:G | M p/ ${ }^{\circ} \mathrm{C}$ | H:G |  | $\mathrm{Mp} /{ }^{\circ} \mathrm{C}$ | H:G |  | M p/ ${ }^{\circ} \mathrm{C}$ | H:G | M p/ ${ }^{\circ} \mathrm{C}$ |
| MeOH | 1:1 | 163-165 |  | - |  |  | - |  |  |  |
| EtOH | $1: 1$ | 156-158 |  | - |  |  | - |  |  |  |
| THF | 1.1 |  |  | - |  |  | - |  | 1:2 | 160-164 |
| Dioxane | - |  |  | - |  |  | - |  | 1:2 | 150-154 |
| A cetone | - |  |  | - |  |  | - |  | 1:1 | 142-144 |
| Pyridine | 1:2 | 117-120 |  | - |  | 1:2 |  | 180-182 | 1:1 | 165-170 |
| DM F | 2:1 | 138-140 | $1: 1$ |  | 76-78 |  | - |  | 1:1 | 126-128 |
| $\mathrm{M} \mathrm{e}_{2} \mathrm{SO}$ | 1:2 | 152-155 |  | - |  | $1: 2$ |  | 142-145 | 1:2 | 164-168 |

${ }^{\text {a }}$ The host-guest ratio was determined by thermogravimetry and ${ }^{1} H N M R$ spectroscopy.


Fig. 1 M olecular structure of $9 \mathrm{a} \cdot \mathrm{M} \mathrm{eOH}$
crystallographic twofold axis which goes through Fel. An intramolecular hydrogen bond is formed between 01 as an acceptor and 02 as a donor $[\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O}=2.774(2) \AA$ and $\left.\angle \mathrm{O} 2-\mathrm{H} \cdots \mathrm{O}=153.4^{\circ}\right]$, resulting in concentration of hydrophilic groups on the centre of the molecule, surrounded by large hydrophobic substituents on C11 and C12. Thetwo cyclopentadienyl rings of 9 a are in an almost eclipsed form, and are not parallel, having an interplanar angle of $5.1^{\circ}$, because of the steric congestion of bulky substituents on C11 and C12: the intramolecular distances of C1‥C10, C5 ... C6 and C3 $\cdots$ C 8 are $3.375,3.391$ and $3.191 \AA$, respectively. The orientation of the four benzene rings is determined mainly by formation of the intramolecular hydrogen bond and the interactions between the ferrocene moiety and the phenyl rings. The dihedral angles of C1-C11-C13-C 18, C6-C 12-C 19-C 24 C1-C 11-C25-C 26 and C6-C12-C31-C 32 are 5.9, 12.8, -73.7 and $-69.0^{\circ}$, respectively.

The crystal structure of $9 \mathrm{a} \cdot \mathrm{MeOH}$ is shown in Fig. 2. Two MeOH molecules as guests are located around a centre of symmetry and bridge the two host molecules of 9a by cyclic hydrogen bonding ( $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{Ol}-\mathrm{H} \cdots \mathrm{O}-\mathrm{H} \cdots \mathrm{O} 2^{\prime}-\mathrm{H} \cdots$ O1'-H $\cdots$ O3'-H $\cdots$ O2) to give a dimer-like structure. The distances and angles of intermolecular hydrogen bonds are $2.760(3)$ and $2.803(2) \AA$, and 167.3 and $144.2^{\circ}$ for O1-H $\cdots 3$ and $03-\mathrm{H} \cdots \mathrm{O} 2^{\prime}$, respectively. The dimers with hydrophilic interiors and hydrophobic exteriors stack along the c-axis to make an inclusion column.


Fig. 2 Crystal structure of $9 \mathrm{a} \cdot \mathrm{M} \mathrm{eOH}$

The molecular structure of the $1: 1$ complex of $9 b$ with D M F is shown in Fig. 3. The host, 9b, has a non-crystallographic twofold axis which goes through Fel. An intramolecular hydrogen bond is formed between O 1 and O 2 with $\mathrm{O} 2-\mathrm{H} \ldots$ $01=2.921(3) \AA$ and $\angle \mathrm{O} 2-\mathrm{H} \cdots \mathrm{O}=171.8^{\circ}$. Two cyclopentadienyl rings of 9 b are nearly eclipsed and make an angle of $2.44^{\circ}$ to each other, the distances of C1 $\cdots \mathrm{C} 10, \mathrm{C} 5 \cdots \mathrm{C} 6$ and C3 $\cdots$ C 8 being $3.35,3.31$ and $3.25 \AA$, respectively. Thus, the overall structure of $9 b$ is similar to that of $9 a$, although the hydroxydiphenylmethyl groups of 9a on C11 and C19 are replaced by 1-hydroxy-1-phenylethyl groups in 9b and the orientations of the phenyl groups are different between 9a and 9 b (see Figs. 1 and 3). Thedihedral angles of C1-C 11-C13-C 14 and C6-C19-C21-C22 are -94.2 and $-100.2^{\circ}$, in contrast to the corresponding values of 5.9 and $12.8^{\circ}$ in 9 a . The hydroxy group $(\mathrm{Ol}-\mathrm{H})$ of $\mathbf{9 b}$ is hydrogen bonded to the carbonyl oxygen of DM F and the hydrogen bond distance and angle are 2.779(3) $\AA$ and $170.4^{\circ}$.
The crystal structure of $\mathbf{9 b} \cdot \mathrm{DMF}$ is shown in Fig. 4. The host molecules stack along the a-axis to form an inclusion column, in the centre of which the guest molecules, DM F, are included. The interior of the column consists of the hydrophilic site of $9 b$ as hydrogen bond donors to the guests and hydrophobic moieties, interacting with the methyl groups of the guests.

The molecular structure of $\mathbf{9 c}$ is shown in Fig. 5. The molecule, 9 9 , has a non-crystallographic twofold axis which goes through Fel. An intramolecular hydrogen bond is formed between O 1 and $\mathrm{O} 2[\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O}=2.860(3) \AA$ and $\angle \mathrm{O} 2-\mathrm{H} \cdots$ $\left.\mathrm{O} 1=169.8^{\circ}\right]$ and between 01 and $\mathrm{CI}[\mathrm{O} 1-\mathrm{H} \cdots \mathrm{Cl}=3.072$ (3) $\AA$ and $\angle \mathrm{O} 1-\mathrm{H} \cdots \mathrm{CI}=136.0^{\circ}$. The two cyclopentadienyl rings of 9 c are in the eclipsed conformation and make an angle of


Fig. 3 M olecular structure of 9b•DM F


Fig. 4 Crystal structure of 9b•D M F
$4.5^{\circ}$ to each other, the bond distances of C1 $\cdots$ C10, C5 . . C 6 and $\mathrm{C} 3 \cdots \mathrm{C} 8$ being $3.389,3.370$ and $3.213 \AA$, respectively. The orientation of the phenyl rings on C 11 and C 12 is characterized by the following dihedral angles; C1-C11-C13-C18 $=7.5^{\circ}$, $\mathrm{C} 6-\mathrm{C} 12-\mathrm{C} 19-\mathrm{C} 24=7.7^{\circ}, \quad \mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 25-\mathrm{C} 26=-78.0^{\circ}$ and C6-C12-C31-C $32=-73.0^{\circ}$. These geometrical parameters clearly show that the overall structure of 9 c is quite similar to that of 9 a (see Figs. 1 and 5). Since the two hydroxy groups of 9c are involved in intramolecular hydrogen bonds and the two chlorine atoms at C14 and C20 partially cover the hydrophilic centre of 9 c , the molecule 9 c might have low ability to form an inclusion complex with the guest molecules.

## C onclusion

Themolecules of 9a-c were designed as host molecules, to form complexes with various guest molecules, by use of the formation of hydrogen bonds between the hydrophilic centres of


Fig. 5 M olecular structure of 9c
hosts and hydrophilic sites of guest molecules and the interactions between the hydrophobic substituents of hosts and hydrophobic moieties of guest molecules. However, these hosts formed complexes with a very limited number of guest compounds, as described above, which might in part be due to the hardness of the host molecules. The molecules of 9a-c havenear $\mathrm{C}_{2}$ symmetry in spite of a lack of $\mathrm{C}_{2}$ symmetry in molecular assemblies in the crystals, reflecting that the molecules may not be so flexible to adjust their conformation to the guest molecule.

## Experimental

${ }^{1} \mathrm{H}$ NMR and IR spectra were measured on a J N M -LA 300 FT spectrometer for $\mathrm{CDCl}_{3}$ solutions and on a FT/IR-300 JA SCO spectrometer for N ujol mulls, respectively.

## Preparation of $1,1^{\prime}$-diaryloyl- and $1,1^{\prime}$-diacetyl-ferrocenes

A ccording to the reported benzoylation ${ }^{8}$ and acetylation ${ }^{9}$ procedure of 7 by using $\mathrm{AICl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 8a as red prisms ( $83 \%$ yield, mp $104-105^{\circ} \mathrm{C}$; lit., ${ }^{8} 106.5-106.7^{\circ} \mathrm{C}$ ) and 8 bb as ruby-red plates ( $80 \%$ yield, $\mathrm{mp} 124-125^{\circ} \mathrm{C}$; lit., ${ }^{9} 127.5-128.5^{\circ} \mathrm{C}$ ) were prepared, respectively. Their IR spectral data are identical to those reported. By a similar aryloylation reaction of 7 with ortho-chlorobenzoyl chloride and 1-naphthoyl chloride, 8 c as red prisms ( $82 \%$ yield, $\mathrm{mp} 166-168^{\circ} \mathrm{C}$ ) and 8 d as orange prisms ( $62 \%$ yield, $\mathrm{mp} 145-148{ }^{\circ} \mathrm{C}$ ) were also prepared.

Preparation of $1,1^{\prime}$-bis(diarylhydroxymethyl)- and $1,1^{\prime}$-bis(1-hydroxy-1-phenylethyl)-ferrocenes
To a solution of PhM gBr prepared from $\mathrm{Mg}(1.94 \mathrm{~g}, 0.08 \mathrm{~g}$ atom) and $\operatorname{PhBr}(13.3 \mathrm{~g}, 0.085 \mathrm{~mol})$ in diethyl ether ( 50 ml ), was added a solution of $8 \mathrm{aa}(7.9 \mathrm{~g}, 0.08 \mathrm{~mol}$ ) in diethyl ether ( 300 ml ), and the mixture was heated under reflux for 6 h . The reaction mixture was decomposed with dilute HCl solution and extracted with toluene. The toluene solution was washed (water and aqueous $\mathrm{NaHCO}_{3}$ ) and dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ). Evaporation of the solvent of the toluene solution gave, after recrystallization from EtOH, 9a as orange prisms, $8.6 \mathrm{~g}, 77.5 \%$ yield, mp 179$181^{\circ} \mathrm{C}, \mathrm{v} / \mathrm{cm}^{-1} 3338(\mathrm{OH}), \delta_{\mathrm{H}} 3.95$ and 4.16 (each $\mathrm{t}, 4 \mathrm{H}$, cyclopentadiene), $4.06(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$ and $7.30(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$. A nal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Fe}: \mathrm{C}, 78.55 ; \mathrm{H}, 5.49 \%$. Found: C, 78.64; C, 5.40\%.

By a similar G rignard reaction of $\mathbf{8 b}$ with $\mathrm{PhM} \mathrm{gBr}, \mathbf{9}$ was obtained as orange needles, $65 \%$ yield, $\mathrm{mp} 143-144^{\circ} \mathrm{C}, \mathrm{v} / \mathrm{cm}^{-1}$ $3356(\mathrm{OH}), \delta_{\mathrm{H}} 1.88(\mathrm{~s}, 6 \mathrm{H}, \mathrm{M} \mathrm{e}), 4.02(\mathrm{~s}, 2 \mathrm{H}, 0 \mathrm{H}), 4.22(\mathrm{t}, 4 \mathrm{H}$, cyclopentadiene), 4.27 and 4.34 (each $\mathrm{q}, 2 \mathrm{H}$, cyclopentadiene) and $7.30(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$. A nal. C alc. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~F}$ e: $\mathrm{C}, 73.25 ; \mathrm{H}$, $6.15 \%$. Found: C, 73.29 ; H , $6.15 \%$. The cyclopentadiene ring proton signals of ferrocene derivatives which are substituted with phenyl or naphthyl group are complicated by an anisotropy effect of the aromatic ring. ${ }^{10} \mathrm{~W}$ hen the cyclopentadiene ring is substituted with a chiral group, its proton signals are more complicated due to a chiral effect.

By a similar Grignard reaction of $\mathbf{8 c}$ with $\mathrm{PhM} \mathrm{gBr}, 9 \mathrm{c}$ was obtained as orange prisms, $26 \%$ yield, $\mathrm{mp} 211-213^{\circ} \mathrm{C}, v / \mathrm{cm}^{-1}$ $3558(\mathrm{OH}), \delta_{\mathrm{H}} 3.63,3.79,4.10$ and 4.75 (each t, 2 H , cyclopentadiene), $5.34(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH})$ and 7.05-7.39 (m, $10 \mathrm{H}, \mathrm{Ph}$ ). A nal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Fe}$ e: $\mathrm{C}, 69.81 ; \mathrm{H}, 4.56 \%$. Found: $\mathrm{C}, 69.88$; H, 4.51\%.
By a similar G rignard reaction of $\mathbf{8 d}$ with $\mathrm{PhM} \mathrm{gBr}, 9 \mathrm{~d}$ was obtained as orange prisms, $29 \%$ yield, $\mathrm{mp} 209-211^{\circ} \mathrm{C}, v / \mathrm{cm}^{-1}$ 3518 and $3442(\mathrm{OH}) ; \delta_{\mathrm{H}} 3.70,3.83,4.15$ and 4.78 (each s, 2 H , cyclopentadiene), 4.73 (s, $2 \mathrm{H}, \mathrm{OH}$ ), 6.99 (d, $2 \mathrm{H}, \mathrm{Ph}$ ), 7.24 (m, $12 \mathrm{H}, \mathrm{Ph}), 7.50(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}), 7.76(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ph})$ and $8.07(\mathrm{~d}, 2 \mathrm{H}$, Ph ). A nal. Calc. for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Fe}$ : $\mathrm{C}, 81.23 ; \mathrm{H}, 5.27 \%$. Found: C , 81.19; H , 5.25\%.

## X-R ay analysis

The single crystals suitable for X-ray analyses were obtained by recrystallization from MeOH for the $1: 1 \mathrm{MeOH}$ complex of 9 a , from DMF for the 1:1DMF complex of $9 \mathbf{b}$, and from M eCN for 9c. All data were collected on a Rigaku AFC7R four-circle diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation using the $\omega-2 \theta$ scan technique and a rotating anode generator ( $50 \mathrm{kV}, 200 \mathrm{~mA}$ ). The structures were solved using direct methods. ${ }^{11}$ The non-hydrogen atoms were refined anisotropically and all hydrogen atoms were included in the structure factor calculations. Empirical absorption corrections were applied. ${ }^{12}$ All calculations were performed using the TEX SA N crystallographic software package ${ }^{13}$
A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. C hem. Soc., Perkin Trans. 2, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 188/43.

## C rystal data for 9a. $\mathrm{CH}_{3} \mathbf{O H}$

$\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Fe}, \mathrm{M}=582.52$. Triclinic, $a=12.273(1), \mathrm{b}=14.864(1)$, $\mathrm{C}=8.753(1) \AA, a=97.91(1), \beta=100.85(1)$, and $\gamma=106.58(1)^{\circ}$, $U=1471.7(2) \AA^{3}$, space group $P 1, Z=2, D_{c}=1.314 \mathrm{~g} \mathrm{~cm}^{-3}$. Orange, prismatic crystal. Crystal dimensions $0.26 \times 0.18 \times$ $0.17 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=43.85 \mathrm{~cm}^{-1}$. 4384 unique reflections $\left(2 \theta<120.1^{\circ}\right), 4196$ with $\mathrm{I}>2 \sigma(\mathrm{I})$, transmission factors: $0.8562-$ 1.1577. N o decay correction applied. $\mathrm{R}=0.035, \mathrm{R}_{\mathrm{w}}=0.062$ and G.O.F. $=1.45$.

## C rystal data for 9b•D M F

$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{NFe}, \quad \mathrm{M}=499.43$. Triclinic, $\mathrm{a}=10.653(1), \quad \mathrm{b}=$ 14.864(2), $c=8.171(2) ~ \AA, \quad a=95.02(1), \quad \beta=101.75(1), \quad \gamma=$ $79.45(1)^{\circ}, U=1243.6(3) \AA^{3}$, space group $P 1, Z=2, D_{c}=1.334 \mathrm{~g}$ $\mathrm{cm}^{-3}$. Orange, prismatic crystal. Crystal dimensions $0.32 \times$ $0.20 \times 0.16 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=51.02 \mathrm{~cm}^{-1} .3321$ unique reflections $\left(2 \theta<113.7^{\circ}\right), 3058$ with $\mathrm{I}>2 \sigma(\mathrm{I})$, transmission factors: $0.8499-$ 1.3124. No decay correction applied. $\mathrm{R}=0.052, \mathrm{R}_{\mathrm{w}}=0.071$ and G.O.F $=1.43$.

## C rystal data for 9c

$\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Fe}, \quad \mathrm{M}=619.37$. M onoclinic, $\quad a=12.924(1)$, $\mathrm{b}=13.981(2), \mathrm{c}=16.282(2) \AA, \beta=97.30(1)^{\circ}, U=2918.1(5) \AA^{3}$, space group $P 2_{1} / n, Z=4, D_{c}=1.410 \mathrm{~g} \mathrm{~cm}^{-3}$. Orange, plate-like crystal. Crystal dimensions $0.34 \times 0.25 \times 0.16 \mathrm{~mm}$. $\mu(\mathrm{Cu}-$ $\mathrm{K} \alpha)=60.79 \mathrm{~cm}^{-1} .4103$ unique reflections $\left(2 \theta<113.6^{\circ}\right)$, 3440 with $\mathrm{I}>2 \sigma(\mathrm{I})$, transmission factors: $0.8215-1.4452$. No decay correction applied. $\mathrm{R}=0.045, \mathrm{R}_{\mathrm{w}}=0.069$ and G.O.F $=1.36$.

## Acknowledgements

The authors wish to thank The M inistry of Education, Science and Culture, Japan, for a Grant-in-A id for Scientific Research on Priority A reas, No. 06242105 and 06242107.

## References

1 F. Toda, Top. Curr. Chem., 1987, 140, 43.
2 F. Toda and K. A kagi, Tetrahedron Lett., 1968, 3695.
3 F. Toda, K . Tanaka, Y. Wang and G.-H . Lee, C hem. Lett., 1986, 109.
4 F. Toda, Y. F ujii, Z. Stein, I. G oldberg, I. M iyahara and K . H irotsu, Supramol Chem., in press.
5 D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo and A. Wonnacott, H elv. Chim. A cta, 1987, 70, 954; F. Toda and K. Tanaka, Tetrahedron L ett., 1988, 29, 551.
6 S. A. Bourne, M. R. Caira, L. R. N assimbeni, M. Sakamoto, K. Tanaka and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1994, 1899; S. A. Bourne, K . L. Gifford N ash and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1996, 2145.
7 S. A. Bourne, M. Sakamoto and F. Toda, J. Chem. Crystallogr., 1995, 25, 755.
8 M. Rausch, M. Vogel and H. Rosenberg, J. Org. Chem., 1957, 22, 903.

9 M. Rosenblum and R. B. Woodward, J. Am. Chem. Soc., 1958, 80, 5443.

10 Y. Okada and T. H ayashi, M agn. R eson. Chem., 1992, 30, 892.
11 G. M. Sheldrick, in Crystallographic Computing 3, ed. G. M. Sheldrick, C. K ruger and R. Goddard, Oxford University Press, 1985, pp. 175-189; M. C. Burla, M. Camalli, G. Cascarano, G. Beurskens, W. P. Bosman, R . de G elder, R . Israel and D. Viterbo, J. A ppl. C rystallogr., 1989, 22, 389.

12 N. Walker and Z. Stuart, A cta C rystallogr., Sect. A ., 1983, 39, 158.
13 TEXSAN, crystal structure analysis package, M olecular Structure Corporation, 1985; 1992.

Paper 6/04077B
Received 10th J une 1996
Accepted 6th September 1996

